Preventing Premature Convergence in a Simple EDA Via Global Step Size Setting
نویسنده
چکیده
When a simple real-valued estimation of distribution algorithm (EDA) with Gaussian model and maximum likelihood estimation of parameters is used, it converges prematurely even on the slope of the fitness function. The simplest way of preventing premature convergence by multiplying the variance estimate by a constant factor k each generation is studied. Recent works have shown that when increasing the dimensionality of the search space, such an algorithm becomes very quickly unable to traverse the slope and focus to the optimum at the same time. In this paper it is shown that when isotropic distributions with Gaussian or Cauchy distributed norms are used, the simple constant setting of k is able to ensure a reasonable behaviour of the EDA on the slope and in the valley of the fitness function at the same time.
منابع مشابه
Niching an Archive-based Gaussian Estimation of Distribution Algorithm via Adaptive Clustering
As a model-based evolutionary algorithm, estimation of distribution algorithm (EDA) possesses unique characteristics and has been widely applied to global optimization. However, traditional Gaussian EDA (GEDA) may suffer from premature convergence and has a high risk of falling into local optimum when dealing with multimodal problem. In this paper, we first attempts to improve the performance o...
متن کاملA TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING WITH NEW SIMPLE FILTER AS AN EFFICIENT AND ROBUST FIRST-ORDER RELIABILITY METHOD
The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most ...
متن کاملThe Gradient Projection Algorithm with Adaptive Mutation Step Length for Non-probabilistic Reliability Index
Original scientific paper Aiming at the problems of selection parameter step-size and premature convergence that occurred when searching the local area in the optimal design of adaptive gradient projection algorithm in this paper, adaptive variable step-size mechanism strategy and adaptive variable step-size mechanism were established. They were introduced into the gradient projection algorithm...
متن کاملTruncation Selection and Gaussian EDA: Bounds for Sustainable Progress in High-Dimensional Spaces
In real-valued estimation-of-distribution algorithms, the Gaussian distribution is often used along with maximum likelihood (ML) estimation of its parameters. Such a process is highly prone to premature convergence. The simplest method for preventing premature convergence of Gaussian distribution is enlarging the maximum likelihood estimate of σ by a constant factor k each generation. Such a fa...
متن کاملControlling Chaos by an Improved Estimation of Distribution Algorithm
Control and synchronization of chaotic systems are important issues in nonlinear sciences. This paper proposes an effective estimation of distribution algorithm (EDA)-based memetic algorithm (MA) to direct the orbits of discrete chaotic dynamical systems as well as to synchronize chaotic systems, which could be formulated as complex multi-modal numerical optimization problems. In EDA-based MA (...
متن کامل